Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals *Chapter 10*

Electron Pair Geometries in VSEPR Theory

Electron Pair Geometry Molecular Geometry

linear

Linear (AB₂)

Electron Pair Geometry Molecular Geometry

Pyramidal

 (AB_3E)

 (AB_2E_3)

 (AB_3E_2)

Bent (AB₂E₂)

Electron Pair GeometryNolecular GeometryVV

Applying VSEPR Theory

- 1. Determine the Lewis structure
- 2. Determine the number of electron pairs (or clouds) around the CENTRAL ATOM multiple bonds count as ONE CLOUD (see next slide).
- 3. Find out the appropriate VSEPR geometry for the specified number of electron pairs, both bonding and lone pairs.
- 4. Use the positions of <u>atoms</u> to establish the resulting molecular geometry.

Multiple Bonds and Molecular Geometry

Multiple bonds count as one -

e.g. 4 bonding pairs around C, but trigonal planar instead of tetrahedral.

$\label{eq:trigonal_planar} \frac{\textbf{TRIGONAL PLANAR}}{\text{Figonal Planar}} \begin{array}{l} - & \text{BF}_3 \left(\text{AB}_3 \right) \\ - & \text{SO}_2 \left(\text{AB}_2 \text{E} \right) \end{array}$

 $\label{eq:tetrahedral} \begin{array}{l} \underline{\text{TETRAHEDRAL}} & - & \text{CH}_4 \; (\text{AB}_{4)} \\ - & \text{NH}_3 \; (\text{AB}_3\text{E}) \end{array}$

- $H_2O(AB_2E_2)$

<u>Example 10.1</u> Use the VSEPR model to predict the geometry of the following molecules and ions: (a) AsH_3 , (b) OF_2 , (c) $AICI_4^-$, (d) I_3^- , (e) C_2H_4

 $\label{eq:states} \begin{array}{l} \underline{\textbf{OCTAHEDRAL}} & - & SF_6 \ (AB_6) \\ & - & BrF_5 \ (AB_5E) \\ & - & XeF_4 \ (AB_4E_2) \end{array}$

Molecular Geometries of Molecules with more than 1 Central Atom

cysteine

Dipole Moments and Polar Molecules

Bond Moments and Resultant Dipole Moments

Which molecule is polar? You must look at the geometry to decide.

Predicted Bonding and VSEPR Geometry for CH₄

<u>Problem</u>: the available s and p-orbitals are at 90° angles, not at the predicted 109.5°!

Orbital Hybridization

New orbitals are constructed from pre-existing s, p, and d-orbitals = hybrid orbitals

- 1. Hybridize the CENTRAL ATOM ONLY (others as needed)
- 2. Only use valence shell electrons
- 3. The number of hybrid orbitals formed = number of atomic orbitals used

sp3 Hybridization

For CH₄, we need 4 hybrid orbitals, so 4 atomic orbitals are required as follows: $(s + p + p + p) = sp^3$

Needed to form 4 sigma bonds

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Formation of sp³ Hybrid Orbitals

Formation of Covalent Bonds

Hybridization Rules

(will be upgraded as we proceed)

1. Hybrid orbitals get 1 electron for a σ -bond, 2 electrons for a lone pair.

Needed to form 2 sigma bonds and 2 lone pairs

sp2 Hybridization

BF₃ - trigonal planar according to VSEPR Theory (incomplete octet exception)

Lewis dot structure

Electron-pair geometry

Molecular geometry

For BF₃, we need 3 hybrid orbitals, so 3 atomic orbitals are required as follows: $(s + p + p) = sp^2$

sp Hybridization

BeCl₂ - linear according to VSEPR Theory

For BeCl₂, we need 2 hybrid orbitals, so 2 atomic orbitals are required as follows: (s + p) = sp

Needed to form 2 sigma bonds

Ex 10.4 Describe the hybridization state of phosphorus in PBr₅

For PBr₅, we need 5 hybrid orbitals, so 5 atomic orbitals are required as follows: $(s + p + p + p + d) = sp^3d$

Needed to form 5 sigma bonds

sp3d2 Hybridization

e.g. SF₆

For SF₆, we need 6 hybrid orbitals, so 6 atomic orbitals are required as follows: $(s + p + p + d + d) = sp^3d^2$

Table 10.4	Important Hybrid Orbitals and Their Shapes					
Pure Atomic Orbitals of the Central Atom	Hybridization of the Central Atom	Number of Hybrid Orbitals	Shape of Hybrid Orbitals	Examples		
s, p	sp	2	180° Linear	BeCl ₂		
s, p, p	sp²	3	120° Planar	BF3		
s, p, p, p	sp ³	4	109.5°	CH ₄ , NH ₄ ⁺		
			Tetrahedral			

Needed to form 6 sigma bonds

Sigma (σ) bonds = end-to-end overlap

Pi (π) bond = side-by-side overlap

C - C	1σ bond
$\mathbf{C} = \mathbf{C}$	1 σ bond 1 π bond

 $C \equiv C \qquad 1 \sigma \text{ bond} \\ 2 \pi \text{ bonds}$

Hybridization Rules

(upgraded – more will be added)

- 1. Hybrid orbitals get 1 electron for a σ -bond, 2 electrons for a lone pair.
- 2. Remaining electrons go into unhybridized orbitals $= \pi$ bonds

DOUBLE BONDS: Ethylene, CH₂CH₂

Lewis Structure:

Apply VSEPR Theory and Determine Hybridization

sp² hybridization on each C atom -

σ bond = end-to-end overlap of the sp² hybridized orbitals

π bond = side-by-side overlap of the unhybridized p-orbitals

Sigma (σ) Bonding in Ethylene

Pi (π) Bonding in Ethylene

DOUBLE BONDS: Formaldehyde, CH₂O

Lewis Structure:

Apply VSEPR Theory and Determine Hybridization

$$H > C = O$$

sp² hybridization on C -

sp² hybridization on O -

Sigma (σ) Bonding in Formaldehyde

TRIPLE BONDS: Acetylene, C₂H₂

Lewis Structure:

Apply VSEPR Theory and Determine Hybridization

H - C = C - H

sp hybridization on each C atom -

sp hybrids and unhybridized p-orbitals

Sigma (σ) Bonding in Acetylene

Pi (π) Bonding in Acetylene

Explain the Bonding Using Valence Bond Theory

 CO_2

Sigma Bonding in CO₂

Pi Bonding in CO₂

<u>VSEPR Theory</u> - electron pair repulsions influence molecular shape

<u>Valence Bond Theory</u> - atoms form bonds by overlapping atomic and/or hybrid orbitals

<u>Applied to $O_2 - 2(6) = 12$ valence electrons or 6 pairs</u>

$$\dot{O} = \dot{O}$$

$$O = O$$

This prediction is WRONG! Since all of the electrons are paired up, the molecule should be diamagnetic, but experiments prove that it is PARAMAGNETIC!

An additional refinement in bonding theory is necessary =

Molecular Orbitals - Preliminary Ideas

Don't forget that electrons behave like WAVES, and there are WAVE FUNCTIONS (ψ) that describe the electron position in space = ATOMIC ORBITALS (ψ^2)

<u>Molecular Orbitals</u> - destructive and constructive interference of atomic orbitals

Sigma bond formation involving p-orbitals

Pi bond formation involving p-orbitals

Principles of Molecular Orbital Theory

- 1. The total number of molecular orbitals = total number of atomic orbitals contributed by the bonding atoms
- 2. Bonding MO's are lower in energy (more stable) than antibonding MO's
- 3. Electrons occupy molecular orbitals following the Pauli Exclusion Principle (spins pair up) and Hund's Rule (remain unpaired as long as an empty orbital is available of the same energy)

Energy Levels of Molecular Orbitals for Homonuclear Diatomics - H2, O2, etc

Molecular orbitals

Molecular Orbital Electron Configurations e.g. O₂

Bond Order

Order = $\frac{1}{2}$ [# electrons bonding MO's -# electrons antibonding MO's]

- 1. The greater the bond order, the more stable the molecule
- 2. A high bond order means higher bond energies and shorter bond lengths.
- 3. Fractional bond orders are possible

Bond order =

Bond order =

Bond order =

Bond order =

Homonuclear Diatomic Molecules of Second Row Elements

(the inner MO's formed from overlap of the 1s orbitals aren't shown)

	\mathbf{B}_2	C ₂	\mathbf{N}_2	O_2	F ₂
σ^*_{2p}					
π_{2p}^*				$\uparrow \uparrow$	↑↓↑↓
σ_{2p}			$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$
π_{2p}	$\uparrow \uparrow$	$\uparrow \downarrow \uparrow \downarrow$			
σ_{2s}^*	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$
σ_{2s}	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$
Bond order	One	Two	Three	Two	One
Bond-dissociation energy (kI/mol)	290	620	946	498	159
Bond distance (pm)	159	131	110	121	143
Observed magnetic	Para	Dia	Dia	Para	Dia
behavior					
(paramagnetic or diamagnetic)					

Resonance and MO Theory

Let's take a look at the molecule ozone - O_3

Lewis structure: 3(6) = 18 or 9 pairs

sp² hybridization of the central oxygen -

Pi Bonding in O₃

Combine 3 p-orbitals = 3 molecular orbitals

Pi Bonding in O₃

Electrons in the bonding MO are free to move along the length of the molecule = delocalization

Bonding π orbital

Another example - NO_3^-

Hybridize all of the atoms to sp² and combine the unused p-orbitals into molecular orbitals.

sp² hybridize the C atoms and combine the unused porbitals into molecular orbitals.

